

INTERNATIONALE AUSGABE

Neue Bürcher Zeitung

Künstliche Intelligenz ist nicht übermenschlich

Sam Altman, Chef des Chat-GPT-Anbieters Open AI, und der Historiker Yuval Harari warnen vor der Ausrottung der Menschheit durch Computersysteme. Solche Science-Fiction-Szenarien lenken von den echten Problemen der künstlichen Intelligenz ab. Von Ruth Fulterer

w vo rei gie late Wa zen

tori AI, tige nacl bei den. vera spric jeden bei k

also (Firm: existe wir ü heuti

Die öffe

Währe
Box s
auffor
logie;
von de
nau da
Harar
pulier
triebs
ten wi
die U
Regie
ein In
schule
für au
W
eine
komu
gen.

Inhaltsübersicht

- 1. Einführung Technische Entwicklungen
- 2. Menschliche Intelligenz Künstliche Intelligenz
- 3. Anwendungsbeispiele von KI in Medizin und Industrie
- 4. Neue Technik Veränderte Haftung Haftungsszenarien
- 5. Anforderungen an die Haftpflichtversicherung
- 6. GOTO END: Fragen?

Die Entwicklung der Computer

Rechenleistung - Konrad Zuse 1941

Z3

- Erster funktionsfähiger Digitalrechner
- Programmierung über Lochstreifen
- **ᢒ** Eingabe/Ausgabeeinheit
- Rechenleistung:
 - vier Grundrechenarten
 - Wurzelrechnung
 - Speicherung nicht möglich

Die Entwicklung der Computer

Rechenleistung

1946 ENIAC*

der erste rein elektronische digitale Universalrechner

- ◆ Platzbedarf betrug 167 m²
- 27 Tonnen
- **●** 174.000 Watt
- ⇒ Rechenleistung:
 - Speicherung von 20 10-stelligen Zahlen
 - vier Grundrechenarten
 - Multiplikation zweier Zahlen in 2,8 Milli-Sekunden
- → Wenn nur eine der 17.468 Röhren ausfiel, rechnete die gesamte Maschine fehlerhaft

^{*} Electronic Numerical Integrator and Computer

Entwicklungsschübe in der Informationstechnologie

Phasen der Technologieentwicklung

Primär-, Grundlagenentwicklungen

- → Hardware (Rechenmaschinen, Leiterplatten (Platinen)
- Programmiersprachen Basic5, cobol 5, fortran 7...
- Numerisch gesteuerte Produktionsmaschinen (CNC...)
- Elektronische Datenverarbeitung
- Software (Anwendungsprogramme OS, Windows... - Win Programme)

Netzwerktechnologien

- Arpadnet (1969)
 Internet (1995)
- Providerrisiken (v. a. Zugangsprovider i. d. Internet)
- Automatisierung = Verknüpfung von Produktionsmaschinen- und Stufen (Anlagentechnologie)
- Bürokommunikation

Digitalisierung des Alltags

- IoT Internet of Things
- M2M Machine to Machine-Steuerungen
- **●** Industrie 4.0
- Komplexe Geschäftsmodelle (z.B. E-Commerce, E-Banking, Streamingdienste)
- Geschäftsmodelle basierend auf Künstlicher Intelligenz (KI)

Entwicklungslinien in der KI

Phasen der Technologieentwicklung

Primär-, Grundlagenentwicklungen

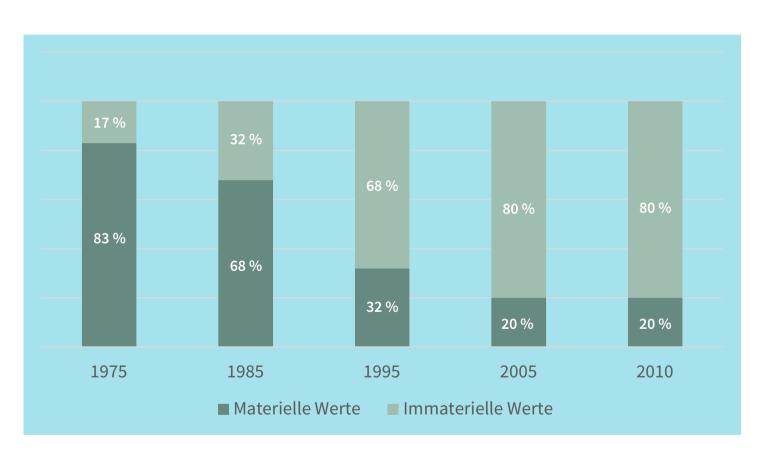
- 1936: "Turingmaschine" Maschinen die Algorithmen verarbeiten
- ◆ 1956: Der Begriff "KI" wird eingeführt
- 1966: Der erste Chatbot ("ELIZA")
- **♦ 1972:** KI gelangt in die Medizin

Erste Anwendungen

- 1961: 1. Industrieroboter
- → 1986: "NETtalk" ein künstlich erschaffenes neuronales Netz lernt sprechen.
- 1997: KI Rechner "Deep Blue" schlägt Garry Kasparov im Schach
- 2011: Sprachassistent "SIRI"

KI reift weiter

- **2012:** KI lernt anhand von Youtube-Videos Katzen zu erkennen
- **2018:** KI debattiert über Raumfahrt und vereinbart einen Friseurtermin ...
- "Project Debater" (IBM) liefert sich mit Debattiermeistern ein Rededuell ... und vereinbart telefonisch einen Friseurtermin ...
- jüngst: ChatGPT auch im Anwenderbereich



Bedeutung der IT

Datenvolumen wächst

Entwicklungen:

- Wandel von Dienstleistungszur Informationsgesellschaft
- ⇒ Überwiegender Anteil von Unternehmenswerten ist heute immateriell
- Wachsende Internationalisierung
- Steigende Arbeitsteiligkeit und Vernetzung

Bedeutung der KI

Wertschöpfung wächst

Quelle: Zwei Billionen Euro der Wirtschaftsleistung durch künstliche Intelligenz (industrie.de)

KI als Künstler (?)

F.A.Z. vom 10.10.2021

Beispielhafte Dimensionen menschlicher Intelligenz

- **♦ formal-logisch** = mathematische Fähigkeiten
- ➡ Emotional = Zuordnung und Bewertung von Gefühlen
- **ᢒ Soziale Intelligenz** = Verhalten, effektive humane Netzwerke
- ◆ Sprachintelligenz = Kommunikative Fähigkeiten, Einordnung von Wort- und Dialogbedeutungen
- **→ Bildliche Intelligenz** = bildlich, formalästhetische Wahrnehmung
- "kristalline" und "fluide" Intelligenz

Menschliche Intelligenz ist nach "Sparten" geordnet – die Summe der Dimensionen ergibt die Intelligenzstruktur!

Was ist künstliche Intelligenz?

KI bezeichnet **Systeme**, die z.B. mit Hilfe von Sensoren ihre Umgebung analysieren und in Folge ihrer Wahrnehmung entsprechend reagieren können.

Im Gegensatz zu Software und Programmen ist eine gewisse Autonomie der Systeme möglich.

Merkmale künstlicher Intelligenz

- Test nach Alan Turing 1950
- Still ist zur Objektklassifizierung (Bilderkennung) fähig
- **♦** KI ist **lernfähig** (maschinelles Lernen)
- **♦** KI kann simulieren/prognostizieren
- **♦** KI kann diagnostizieren
- → KI kann dialogisieren (persönliche Assistenten)

Künstliche Intelligenz ist der menschlichen Intelligenz nachgeahmt.

Formen des Maschinenlernens

Wie messe ich die "Intelligenz" der Systeme?

Überwachtes Lernen (supervised)

- Das System bekommt vorgegeben, was es lernen soll
- Aufarbeitung und Kategorisierung umfangreicher Datensätze zur "Fütterung" der KI
- ◆ Anhand von Bildern kann die KI Zuordnungen nach Kategorien (z.B. Tier oder Fahrzeug) treffen.

Unüberwachtes Lernen (unsupervised)

- Das System liest verfügbare Daten und soll Muster und Cluster erkennen
- Unüberwachtes (unsupervised)
 Lernen
- Das System prognostiziert Ähnlichkeiten und Übereinstimmungen

Bestärkungslernen – Reinforcement Learning

- Das System muss erst eine Reihe von Aktionen durchführen, bevor es das endgültige Erlebnis erfährt.
 - (z.B. Schachprogramm)
- Lernziel = eine z.B. eine Strategie/Verhaltensmuster
- Richtige Strategien werden belohnt (z.B. Punkte oder Sieg)

Starke/schwache Intelligenz

Wie messe ich die "Intelligenz" der Systeme?

Schwache Intelligenz

- Eingeschränkte, vordefinierte Bereiche, in denen menschliche Intelligenz nachgeahmt wird.
- Suchmaschinen, Gesichts- und Texterkennung, Übersetzung, medizinische Diagnostik

Starke Intelligenz

Die Systeme sind in der Lage, nahezu alle Dimensionen menschlicher Intelligenz nachzuahmen.

Im Ergebnis!

Der Grad der "Intelligenz" von KI-Systemen lässt sich anhand von Faktoren wie Selbständigkeit des Systems, Komplexität des zu lösenden Problems oder Effizienz der Problemlösungsstrategie ermessen.

Neuronale Netze/Deep learning

Übertrifft KI die menschliche Intelligenz?

Neuronale Netze

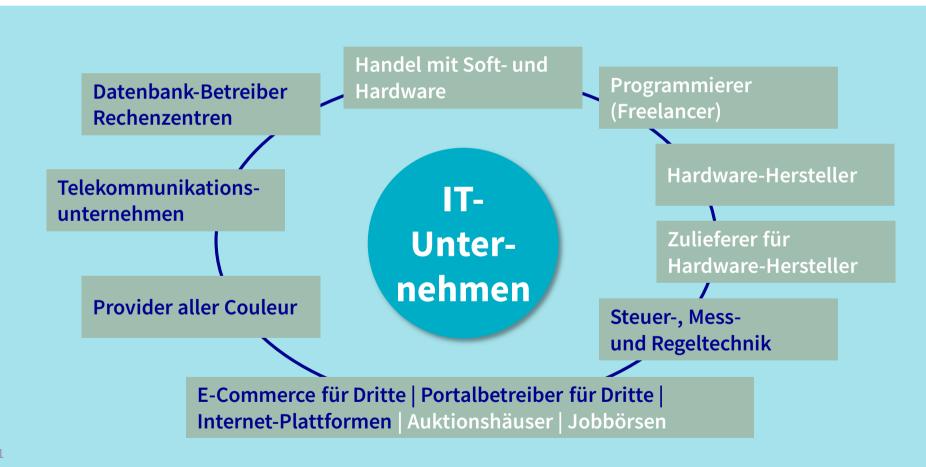
- z.B. Netz von photosensitiven Einheiten zur "Abtastung" von Bildern
- komplexe Form digitalerSignalverarbeitung
- "Vorbild: Entstehung des menschlichen Gehirns
- Humane Neuronen sind informationstechnologisch nachgebildet

Deep Learning

- ◆ Input-Systeme: Datenbanken und Internet (dadurch schier unbegrenzte Lernmöglichkeiten)
- Die Vielzahl an "Lernanreizen" führt zur Verfeinerung der "Lerneffekte" (das ist dem Menschen nicht unähnlich)

Im Ergebnis!

Der Grad der "Intelligenz" von KI-Systemen lässt sich anhand von Faktoren wie Selbständigkeit des Systems, Komplexität des zu lösenden Problems oder Effizienz der Problemlösungsstrategie ermessen.


Künstliche Intelligenz (Artificial Intelligence)

Anwendungsbereiche – Allgemein

Der Markt der IT-Dienstleister -

Für welche Dienstleister ist KI besonders relevant?

Anwendungsfall 1: KI in Medizin

KI leistet Diagnoseunterstützung

- Still Patient:innendaten (Laborparameter, Symptomatik, Anamnese...) werden in das System gespeist.
- Die KI generiert unter Verwendung von Datenbankinformationen eine Diagnose, mögliche Differentialdiagnosen und evtl. medizinische Handlungsalternativen.

- → Fehlerhafte Datenbankverknüpfungen und/oder interne Systemfehler führen zu falscher Diagnostik und Therapievorschlägen.
- Arzthaftungsregresse!
- → Fehlerhafte Datenverarbeitung Ansprüche aus Datenschutzverletzungen.

Anwendungsfall 2: KI als Providerleistung

Al as a Service

Mittelständische Unternehmen überlassen verschiedene Geschäftsbereiche einem entsprechenden Provider:

- Die KI übernimmt Aufgaben des Controllings
- **♦** Kundenmanagementaufgaben
- **♦** Überwachung von Rechnungslegungsvorschriften/Reisekosten...
- **ᢒ** Google, et. al.
- Amazon (kundenspez. Angebote)

Denkbare Anspruchsszenarien

- Fehlerhafte Verarbeitung führt zur Anwendung z.B. falscher Rechnungslegungsvorschriften - Konsequenz: Bußgelder!
- Fehlerhafte Buchungsprozesse führen zu Verfahren bei Steuerbehörden!
- Fehlerhafte Datenverarbeitung im Bereich Kundenmanagement – Ansprüche aus Datenschutzverletzungen.

Anwendungsfall 3: Automatisierte Geschäftsprozesse

Abrechnungssysteme

- Die Systeme übernehmen die Verarbeitung von Abrechnungsdaten von Ärzt:innen/Kliniken bis hin zu Rechnungsdruck und Versandsteuerung an die Kostenträger.
- Plausibilitäten können von der KI geprüft werden.
- Vorgangsarchivierung
- → Fallkonstellationen und statistische Auswertungen sind in komplexen Datenbeständen möglich.

• Archivierung fehlerhaft: Fallkonstellationen und

Rechnungsgänge nicht mehr nachvollziehbar.

• Fehlerhafte Datenverarbeitung sensibler Abrechnungs-

daten - Ansprüche aus Datenschutzverletzungen.

Anwendungsfall 4: Effiziente Abfallwirtschaft

Entsorgungslogistik

- Sensordaten in Entsorgungsfahrzeugen übermitteln den Füllstand des Fahrzeuges an das System.
- Das System errechnet eine effiziente und dynamische Tourenplanung.
- ⇒ Überflüssige Behälterstandorte werden ermittelt.
- → Die Erstellung optimierter Routen erspart unnötige Fahrtwege.
- ⇒ Ökologische Nachhaltigkeit und Kostensenkung ist das Primärziel dieser KI.

Anwendungsfall 5: Digitalisierte Fertigungsprozesse

Automotive

Systeme der KI planen und steuern Fertigungsprozesse in der Herstellung von Kfz-Teilen oder Automobilen

Die Systeme erfassen "in time" Produktionsabläufe, decken Störungen auf und generieren "Ratschläge" wie eventuelle Störfelder

Die Anbindung an ERP-Systeme ermöglicht frühzeitige Bestellungen von Produktionsmitteln.

Produktionsmonitoring (Wartungsintervalle von Maschinen etc...)

Denkbare Anspruchsszenarien

- Mehrkosten durch fehlerhaft generierte Maßnahmen
- Betriebsunterbrechungsszenarien durch verspätete
 Bestellmaßnahmen von Produktionsmitteln
- Maschinenstillstände, weil Wartungsintervalle nicht rechtzeitig instruiert wurden

Angreifer und Feinde von IT-Systemen

Aus der Welt der KI

Negativ

- KI basierte Malware
- Angriffssysteme lernen
 Schwachstellen und Angriffspunkte

Positiv

- Schadsoftware mit KI erkennen
- Erkennung von Cyberangriffen
- Anomalieerkennung und Abwehr

Mögliche Haftungsgrundlagen

Deliktisch, § 823 BGB

- Mangelhafte; fehlerhafte Programmierung
- Nicht geeignete HW
- E-Commerce für Dritte
- Fernwartungen

ProdHG

- Softwareherstellung,
- HW-Herstellung, Robotik...

-

Zivilrechtl./vertragl. Ansprüche nach BGB

- Garantierte
 Zusagen mit Blick
 auf
 Funktionalitäten
- Terminzusagen
- Vertragsstrafen

Zurechnungen z.B. nach § 278 BGB

"Roboter als Erfüllungsgehilfe"

Fallbeispiel – Industrieroboter

- → Der Roboter ist einem menschlichen Arm nachempfunden, der Kleinkomponenten selbständig zusammenbaut, je nachdem welche Teile "zugereicht" werden.
- Der Roboter ist durch ständiges Lernen fähig, einen hohen Grad der "Intelligenz" zu erreichen.
- Schadenfiktion: Fertigung fehlerhafter Teile
- ◆ Evtl. Haftungsgrundlagen = ProdHG (Hardware, Software) – der Roboter selbst fällt unter den "Sachbegriff"

Quelle: https://www.aktiv-online.de/news/fachkraeftemangel-koennen-roboter-die-luecke-schliessen-16848

Variante – Robotik: Pflegeroboter Automatisierte Geschäftsprozesse

Medizin/Pflege

- → Teils humanoide Roboter werden eingesetzt um z.B.
- ◆ Patienten zur Verhinderung des Wundliegens umzulagern
- Es werden vom Pflegeroboter Medikamente ausgeteilt
- Der sprachintelligente Roboter ersetzt menschliche Dialogpartner in Geriatrie und Psychiatrie

- Personenschäden, jeglicher Couleur z.B.
- → Fehlerhafte Lagerung
- ➡ Falsch verabreichte Medikation
- → Fehlsteuerungen des Robot-Systems führen zu unbeabsichtigten Verletzungen bei Patient:innen...
- → Zurechnung nach § 831 BGB?

Fallbeispiel – Selbstfahrendes Fahrzeug

- ➡ Ein selbstfahrendes Fahrzeug beschädigt bei einem autonomen Parkvorgang ein teures Rennrad.
- → Haftungsprüfungen: Hardware (Sensoren)? Software (fehlerhafte Informationsverarbeitung)?
- ⇒ Evtl. Haftungsgrundlagen = ProdHG (Hardware, Software)

Aktuelle Haftpflichtdeckungsmodelle – IT = ausreichend

- Gedeckt sind Ansprüche der gesetzlichen Haftpflicht (Personen- und Sachschäden, sowie Produkteschäden) durch die Tätigkeiten bzw. das Inverkehrbringen von IT-Produkten
- Offene Vermögensschadendeckung = gegeben
- Teilweise Deckung für Eigenschäden
- **ᢒ** BU-Szenarien entgangener Gewinn = gedeckt

Aus heutiger Sicht ist über aktuelle IT-Deckungsmodelle der Versicherungsbedarf gedeckt. Probleme können sich eher durch den Zeichnungswillen der Versicherer ergeben.

Aktuelle Haftpflichtdeckungsmodelle – IT = ausreichend

➡ Risiko- und Tätigkeitsbeschreibungen sind in modernen IT-HP-Policen offen und beispielhaft verfasst.

So fallen Programme bzw. Systeme der KI und damit verbundene Dienstleistungen unter die gängigen Begriffe: Software-, Providing, ...

Wichtig: offene und beispielhafte Risiko-/Tätigkeitsbeschreibungen in den Policen prüfen.

Aktuelle Haftpflichtdeckungsmodelle – IT = Problemfälle

- ◆ Vertragliche Erfüllung nicht versichert
- ➡ Wie sind Schäden künftig zu bewerten, in denen die Haftungsfrage nicht klassisch geklärt werden kann. (Ursprüngliches Verschulden ist nicht auf den Erzeuger/Programmierer des Systems konstruierbar?

Wichtig: Sonderfälle- und – konstellationen schon in der Vertragsanbahnung klären.

Kurzübersicht: Haftungsfragen

- ♦ Was ist einschlägig? BGB, ProdHG, ProdSiG…?
- Wer muß für die "Verselbständigung" der Systeme haften?
- Skönnen Systeme der KI Erfüllungs-/und/oder Verrichtungsgehilfen sein? (Insbesondere Roboter?)

Wichtig: Sonderfälle- und – konstellationen schon in der Vertragsanbahnung klären.

Ihre Fragen

- € ...
- **•** ...
- € ...

Vielen Dank für Ihre Aufmerksamkeit!

